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Abstract

This paper develops a model for a specific type of hose construction designed to withstand very high operating

pressures. The model is based on a model previously developed by Entwistle and White (Int. J. Mech. Sci. 19 (1977) 193)

with two significant modifications. Firstly the compressible inner core is included in the model using Lam�ee’s thick

walled cylinder theory. Secondly the model allows for the squeezing effect on wires when a hose gets shorter under

pressurisation. The model calculates whether the wires in a particular layer will be squeezed together and when this

occurs, the behaviour is modelled using Hertzian contact theory. The governing equations are solved using a minimising

Newton Raphson technique. Model predictions are compared with experimental results obtained for pressure defor-

mation response in terms of hose axial strain and wire strain and show good agreement. Considerable hysteretical

behaviour is seen in the hose axial strain and it is suggested that this may be due to the twisting contact movements

between different layers and as such may be a good indicator of the amount of fretting taking place. It is also suggested

that, when a hose is designed to get shorter on pressurisation, length change may be a good indicator of manufacturing

quality in terms of wire packing efficiency. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Thermoplastic wire hoses used in a number of contemporary high pressure applications have a signif-
icantly different construction to standard rubber hoses (SAE J517, 1986). Some applications include water
jet cutting and blasting (Raghaven and Olsen, 1989), oil well blow out preventers and bolt tensioning
devices (Anon, 1992).

The hoses consist of an inner thermoplastic core with layers of wires wound around it. The wire layers
are wound in pairs, one layer of each pair being wound left hand and the other right hand in order to
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achieve a torque balanced construction (i.e. minimal twist on pressurisation). There are no intermediate
layers of plastic and wires in the same layer are touching in order to maximise packing density. On the
outside of the reinforcement layers is a thermoplastic outer cover which mainly serves to protect the rein-
forcement from wear or corrosion. The hoses are often designed to get shorter on pressurisation as this has
been found to improve their endurance. The details of hose constructions used in this work are given in
Tables 1–7. The ability to predict the mechanical behaviour of these hoses will allow hose designers to
optimise their designs for load sharing between reinforcement layers. It will also give an insight into the
mechanisms of fatigue and allow design changes to improve the endurance characteristics.

Nomenclature

Ai wire area of one wire in layer
di wire diameter in layer
dsp available space for wire
Ei Young’s modulus of wires in layer
Eic Young’s modulus of the inner core
Fa hose axial force caused by wire squeezing
FL lateral force caused by wire squeezing (in its own axis)
FLU lateral force per unit length caused by wire squeezing (in its own axis)
FR radial force caused by a helical wire in tension
FRU radial force per unit length caused by a helical wire in tension
Fzic axial force contribution of the inner core
Gi modulus of rigidity of a wire
li, l0i wire length in one pitch of helix of layer
Si pitch length of a wire layer (axial length of one rotation of helix)
Ni number of wires in layer
n number of layers in a particular construction of hose
P0, Pi internal pressure, interlayer pressure on inside of layer
Ri, R0

i inner winding radius of layer
Ta, Ti axial tension in a strand, axial tension in a wire of layer

Greeks
ai, a0

i lay angle of helix of layer
ci twist coefficient in a single pitch of a helix
ei wire strain
ez hose axial strain
eli lateral wire strain in layer
mic Poisson’s ratio of the inner core
ni[eli] parameter for wire compression theory in layer (which is a Boolean function of the lateral wire

strain)
q, qc radius and complimentary radius of curvature of a helix

Indices
(0) denotes pressurised state
i subscript denotes that the parameter refers to reinforcement layer i
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Table 2

Two layer hose wire geometry and material properties

Hose R1 (mm) N1 A1 (mm2) D1 (mm) E1 (MPa) a1 (degrees)

Layer 1

2006st 4.15 52 0.071 0.3 210000 54.7322

2006str 4.05 42 0.096 0.35 210000 56.3756

2012st 7.55 70 0.126 0.4 210000 54.8996

R2 (mm) N2 A2 (mm2) D2 (mm) E2 (MPa) a2 (degrees)

Layer 2

2006st 4.45 54 0.071 0.3 210000 55.9095

2006str 4.4 46 0.096 0.35 210000 55.9382

2012st 7.95 71 0.126 0.4 210000 56.3167

Table 1

Two layer hose inner core data and hose burst pressure

Hose Material R0 (mm) R1 (mm) mic Eic (MPa) Burst (bar)

2006st PA12 3.15 4.15 0.47 350 2100

2006str POM 3.15 4.05 0.4 2900 2250

2012st PEE5556 6.4 7.55 0.47 350 1400

Table 3

Four layer hose inner core data and hose burst pressure

Hose Material R0 (mm) R1 (mm) mic Eic (MPa) Burst (bar)

4006st PA12 3.15 4.05 0.47 350 3500

4012st PA12 6.4 7.65 0.47 350 3250

Table 4

Four layer hose wire geometry and material properties

Hose R1 (mm) N1 A1 (mm2) D1 (mm) E1 (MPa) a1 (degrees)

Layer 1

4006st 4.05 42 0.096 0.35 210000 56.3756

4012st 7.65 48 0.283 0.6 210000 54.7910

R2 (mm) N2 A2 (mm2) D2 (mm) E2 (MPa) a2 (degrees)

Layer 2

4006st 4.4 46 0.096 0.35 210000 55.9382

4012st 8.25 49 0.283 0.6 210000 56.8201

R3 (mm) N3 A3 (mm2) D3 (mm) E3 (MPa) a3 (degrees)

Layer 3

4006st 4.75 49 0.096 0.35 210000 56.3434

4012st 8.85 64 0.246 0.56 210000 51.3350

R4 (mm) N4 A4 (mm2) D4 (mm) E4 (MPa) a4 (degrees)

Layer 4

4006st 5.1 52 0.096 0.35 210000 56.6932

4012st 9.41 66 0.246 0.56 210000 52.6231
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Table 5

Six layer hose inner core data and hose burst pressure

Hose Material R0 (mm) R1 (mm) mic Eic (MPa) Burst (bar)

6005st POM 2.4 3.65 0.4 2900 6250

6012st PA12 6.4 7.65 0.47 350 4500

Table 6

Six layer hose wire geometry and material properties

Hose R1 (mm) N1 A1 (mm2) D1 (mm) E1 (MPa) a1 (degrees)

Layer 1

6005st 3.65 37 0.096 0.35 210000 57.3954

6012st 7.65 47 0.283 0.6 210000 55.6290

R2 (mm) N2 A2 (mm2) D2 (mm) E2 (MPa) a2 (degrees)

Layer 2

6005st 4 39 0.096 0.35 210000 58.6442

6012st 8.25 48 0.283 0.6 210000 57.5814

R3 (mm) N3 A3 (mm2) D3 (mm) E3 (MPa) a3 (degrees)

Layer 3

6005st 4.35 53 0.071 0.3 210000 55.7817

6012st 8.85 62 0.246 0.56 210000 52.7537

R4 (mm) N4 A4 (mm2) D4 (mm) E4 (MPa) a4 (degrees)

Layer 4

6005st 4.65 56 0.071 0.3 210000 56.1485

6012st 9.41 63 0.246 0.56 210000 54.5873

R5 (mm) N5 A5 (mm2) D5 (mm) E5 (MPa) a5 (degrees)

Layer 5

6005st 4.95 58 0.071 0.3 210000 57.1120

6012st 9.97 69 0.196 0.5 210000 57.5024

R6 (mm) N6 A6 (mm2) D6 (mm) E6 (MPa) a6 (degrees)

Layer 6

6005st 5.25 62 0.071 0.3 210000 56.7564

6012st 10.47 72 0.196 0.5 210000 57.6916

Table 7

Hose 8005 inner core and reinforcement data

Core material R0 (mm) R1 (mm) mic Eic (MPa) Burst (bar)

POM 2.25 3.5 0.4 2900 7440

Wires Ri (mm) Ni Ai (mm2) Di (mm) Ei (MPa) ai (degrees)

Layer 1 3.5 19 0.210 0.3 210000 54.5541

Layer 2 3.8 20 0.210 0.3 210000 55.6606

Layer 3 4.1 53 0.071 0.3 210000 53.4569

Layer 4 4.4 56 0.071 0.3 210000 54.0096

Layer 5 4.7 58 0.071 0.3 210000 55.1808

Layer 6 5 62 0.071 0.3 210000 54.9135

Layer 7 5.3 63 0.071 0.3 210000 56.5004

Layer 8 5.6 68 0.071 0.3 210000 55.6217
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2. Previous theory

Hose theories have developed along two separate paths according to different types of hose construc-
tions: hose with a low fraction of reinforcement where the rubber within the construction plays a dominant
role in the hose behaviour and hose where the wire reinforcement plays a dominant role in the hose be-
haviour. The theory for rubber dominated hose has been developed predominantly by Kuipers and
co-workers (Van Den Horn and Kuipers, 1988; Kuipers and Van der Veen, 1989; Teerling, 1994). Wire
dominated hose theories are an extension of wire strand theory (a strand is defined as a number of wires
wound helically around a central wire or solid plastic core). A short review of relevant strand and hose
theory pertinent to the current theory will be made in the following paragraphs. A more complete dis-
cussion and review of strand theory is given by Cardou and Jolicoeur (1997).

Hruska (1951, 1952, 1953) analysed the axial, tangential and radial stresses within a strand assuming no
change in the reinforcement winding radius, no twist and no change in lay angle, a. The wires were assumed
to have tensile stiffness but no bending or torsional stiffness. The relationship for axial force, Ta, as a function
of wire tension Ti, is (where ai is the lay angle):

Ta ¼ Ti cos ai ð1Þ
Hruska gives an expression for radial force per unit length of a wire as a relationship between the wire

tension, T , and radius of curvature, q, (a proof for this is given by Machida and Durelli (1973)). In the limit,
for a large radius of curvature to unit length ratio, the radial force per unit length, FRU, is given by

FRU ¼ T
q

ð2Þ

where the radius of curvature can be shown for a helix to be

q ¼ Ri

sin2 ai

ð3Þ

where Ri is the winding radius of the helix (see for example Lord and Wilson (1984)).
A more appropriate assumption for a hose reinforcement geometry is one which allows geometric

changes to take place as the hose is pressurised. The first model along these lines was proposed by Entwistle
and White (1977) for a rubber braided hose. The geometry of the deformed reinforcement is shown in
Fig. 1. The model does not allow twisting of the hose since this will be zero for a braided hose.

The relationships between the wire winding radius in undeformed and deformed conditions can be
derived by the trigonometric relations and result in the following expression:

R0
i

Ri
¼ ð1þ eiÞ

sin a0
i

sin ai
ð4Þ

The pressure which one layer applies on another can be derived from the radial force per unit length of
hose (Eq. (2)), if this is divided by the circumference of the layer it gives a pressure. Although only given for
the case for a two layer hose, this can easily be extended to a multiple layer hose with n layers in the form of
the summation:

P1 ¼
Xn

i¼1

NiAiEiei sin a0
i tan a0

i

2pR02
i

ð5Þ

The expression for axial equilibrium (extended to multiple layers) is given in the following summation:

pR02
1 P1 þ p

Xn�1

i¼1

ðR02
iþ1 � ðR0

i þ diÞ2ÞPiþ1 ¼
Xn

i¼1

NiAiEiei cos a0
i ð6Þ
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The right-hand side of the equation represents the axial force of the helical wires as proposed by Hruska
(Eq. (1)). The left-hand side represents the pressure of the fluid medium acting against the end of the hose,
the outer diameter of the inner core is used because the inner core is assumed to have no shear stiffness and
behave like an incompressible fluid. This expression is added to a summation which represents the pressure
effect of rubber between each pair of reinforcement layers, this was also assumed to act like incompressible
fluid. This interlayer expression is slightly different from that given by Entwistle and White (1977), because
in this paper the winding radius of a layer, Ri, is defined as the inner diameter (rather than the middle) and
because the volume of the wires has not been included here.

Finally the relationship between the winding radius of one layer and the next was determined by the
incompressible rubber between them and this was enforced by the following constant volume equation
(again this expression is slightly different from Entwistle and White (1977) for the reasons mentioned in the
previous paragraph):

ðpR2
iþ1 � pðRi þ diÞ2Þ ¼ ðpR02

iþ1 � pðR0
i þ diÞ2Þð1þ ezÞ ð7Þ

Knapp (1979) developed a stiffness matrix for strands with a soft core which allowed for radius changes
in the helical wires caused by the compression of the core. It also allowed for the overall twist of the strand
(in a similar way to Machida and Durelli (1973)) by a twisting factor c (see Fig. 1(b)) giving the expression:

R0
i ¼ Ri

ð1þ eiÞ sin a0
i

ð1þ ciÞ sin ai
ð8Þ

Breig (1988) develops a theory which attempts to take into account the twisting effect that a ‘spiralised’
reinforcement will have on a hose, using the same deformed helical wire geometry as Knapp (1979) (see
Fig. 1(b)). Unlike Knapp only the axial strains in the wires are taken into consideration and the torsional
effect of the helical wires is derived from the tangential force multiplied by its effective lever arm. The
polar second moment of area of a single layer is approximated by a tube with thickness t. The tube is

Fig. 1. Assumption for the deformed reinforcement geometry, according to Entwistle and White (1977) and Knapp (1979).
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assumed to have the same thickness as a wire diameter, this gives an expression for the rotation coefficient,
ci, as follows:

ci ¼
RiNiAiEiei sin a0

i

2pðR0
i þ ðdi=2ÞÞ2diGi tan ai

ð9Þ

All the other relationships in Breigs’ theory follow the same lines as Entwistle and White (1977). After some
algebraic manipulations Breig (1988) ends up with a system of 2n equations with 2n unknowns being
a0
1�nc1�n with the internal pressure and the axial strain, ez, as input parameters. He also presents pressure

deformation relationships for an incompressible inner core as follows:

R0
0 ¼ R02

1

�
� ðR2

1 � R2
0Þ

ð1þ eaÞ

�1=2
ð10Þ

P0 ¼ P1 þ
2Eic

3
R0
1

�
� R1 þ

R1ea
2

�
ðR2

1 � R2
0Þ

R1R2
0

ð11Þ

Jakeman and Knight (1995) used the Breig (1988) theory for a thermoplastic hose, but they changed the
interlayer compatibility condition to the following:

R0
iþ1 ¼ R0

i þ 2di ð12Þ

This is because there was no interlayer of rubber in the hose construction. The expression is 2d because the
layers are braided and so each layer is 2d thick (as it is two sets of wires counter wound). They also added a
number of other factors to account for the fact that it is a polymer fibre reinforced hose rather than a wire
reinforced hose. These included accounting for the radius of curvature effect on the yarn strength and
including the friction at the braid crimp locations in an attempt to account for hysteresis.

2.1. Discussion

No hose theory attempts to model the individual wire bending and twisting effects. There is some jus-
tification for this as the relative diameter of the wires in the hose is considerably smaller, as a proportion
to the overall structure, compared with that of a seven wire strand.

There are a number of specific criticisms of the Breig (1988) model. Firstly, the assumption that the polar
second moment of area is equivalent to a solid tube seems over simplistic and will result in much stiffer
behaviour than actually exists, it probably does represent an upper bound to the hose twisting stiffness. An
alternative approximate assumption for the polar moment of inertia would be the sum of the individual
polar moment of inertia of each wire about its own axis, this would represent a lower bound value. The
Breig (1988) model uses the axial strain as an input, yet it is not difficult to rearrange the equations of the
model to allow prediction of the axial strain. Since this is one of the few easily measured characteristics of a
hose it seems sensible to predict values that can be compared with the experimental results and thus give an
indication of the validity of the model. Finally the Breig (1988) numerical solution involves 2n unknowns
a0
1�nc1�n with 2n equations. This solution has a parameter for twist, c, for every layer and yet all the layers
in the hose twist together (as shear strain in the rubber interlayers is neglected in this analysis). These
parameters could be eliminated in favour of an overall twist parameter and reduce the 2n equations down
to nþ 1.
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3. Development of the model

3.1. Basic assumptions

The geometrical relationships developed by Entwistle and White (1977) for the behaviour of the rein-
forcement before and after pressurisation have been taken as the basis for this current model. The geometry
is shown in Fig. 1 and the geometrical relationships can be summarised by following expressions:

ei ¼ ð1þ ezÞ
cos ai

cos a0
i
� 1 ð13Þ

R0
i ¼ Rið1þ ezÞ

tan a0
i

tan ai
ð14Þ

This model assumes no twist of the hose on pressurisation. This is thought to be a reasonable simplification,
since there is no noticeable twist of these hoses in experience (they are designed with layers of alternate
direction). The torsional assumptions in the form derived by Breig (1988) are not included.

The definition of the winding radius of the various reinforcement layers and the inner core is taken to be
the inner dimension. As there are no layers of rubber or plastic between reinforcement layers in the hose
being modelled the expression within the axial equilibrium equation (Eq. (6)) relating to this has been
dropped. Additionally the interlayer compatibility has been replaced by a new simple expression similar to
that used by Jakeman and Knight (1995). The detailed expressions will be given in the following sections.

3.2. Inner core relationships

The well known theory of Lam�ee and Clapeyron (1833) for thick walled cylinder has been utilised. For the
particular case of a cylinder loaded with internal and external pressure, expressions can be derived for the
radial and hoop stresses (see for example Housner and Vreeland (1966)). Both expressions are a function
of the radius r and are as follows:

rr ¼
P0R2

0 1� R2
1

r2

h i
� P1R2

1 1� R2
0

r2

h i
R2
1 � R2

0½ � ð15Þ

r# ¼ �
P0R2

0 1þ R2
1

r2

h i
� P1R2

1 1þ R2
0

r2

h i
R2
1 � R2

0½ � ð16Þ

Using the generalised Hooke’s law, an expression can also be derived for the axial stress and reduces to:

rz ¼ Eez þ mðrr þ r#Þ ¼ Eez þ
2mðP0R2

0 � P1R2
1Þ

ðR2
1 � R2

0Þ
ð17Þ

This expression is not a function of radius and is constant across the cross-section of the cylinder. The axial
force contribution of the inner core Fzic, is simply the axial stress multiplied by the deformed cross-sectional
area of the cylinder i.e.:

Fzic ¼ rzpðR02
1 � R02

0 Þ ð18Þ

The hoop strain can be derived in terms of the stresses in the three cylindrical components and the elastic
constants of the tube. As can be proved (Housner and Vreeland, 1966) the hoop strain is equal to the radial
displacement, u, divided by the radius (i.e. u=r). Substituting the hoop, axial and radial stresses into the
generalised Hooke’s expression for hoop strain we gain an expression for u=r as follows:
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e# ¼
u
r
¼ 1

E
ðR2

0P0 � R2
1P1Þð1� mÞ þ ðP0 � P1Þ

R2
0
R2
1

r2 ð1þ mÞ � 2m2ðP0R2
0 � P1R2

1Þ
R2
1 � R2

0

"
� mEez

#
ð19Þ

For the specific case of r ¼ R1 then u ¼ R0
1 � R1, substituting in these values and solving for P1 we get the

following expression:

P1 ¼
2ð1� micÞ
1þ R2

1
ð1�2micÞ
R2
0

h i P0

�
� EicðR2

1 � R2
0Þ

2R1R2
0ð1� m2icÞ

ðR0
1 � R1 þ R1micezÞ

�
ð20Þ

The expressions for Fzic, P0 and P1 are used later in the general model for the hose. It can be seen that if a
Poisson’s ratio, m, of 0.5 is substituted in Eq. (20) it reduces to the expression by Breig (1988) for P0, i.e. Eq.
(11). A further expression is required in order to relate the deformed internal radius of the core to the
pressures, geometry and material properties. This is achieved by substituting the generalised Hooke’s law
with the internal boundary conditions, where r ¼ R0 and u ¼ R0

0 � R0, after some algebraic manipulation
the internal deformed radius R0

0 is given by the following:

R0
0 ¼

R0ð1þ micÞ
EicðR2

1 � R2
0Þ

P0ðR2
0ð1

�
� 2micÞ þ R2

1Þ � 2P1R2
1ð1� micÞ

	
þ R0ð1� micezÞ ð21Þ

3.3. Lateral compression of wires

3.3.1. Development of an explicit force–strain relationship
Radzimovsky (1953) developed expressions for stress, strain and change in distance between centres for

the case of two cylinders pressed together with a line force.
The expression has been conveniently tabulated by Young (1989) and can be expressed in terms of a

lateral strain eL, and once the appropriate substitutions are made it can be reduced into the following form:

eL ¼ dd
d

¼ 2FLUð1� m2Þ
dpE

2

3

2
64 þ 2 ln

2d

2:15
ffiffiffiffiffiffiffiffi
FLUd
2E

q
2
64

3
75
3
75 ð22Þ

The expression in this form cannot be utilised in the theory because the force per unit length, FLU, is needed
and this parameter is embedded implicitly in the equation. A numerical technique has been used to gain an
expression for the force per unit length by plotting the force per unit length divided by the wire diameter
versus the strain. The behaviour is linear within the region of interest and has therefore been approximated
using a linear least squares approximation of the curve, giving the following expression:

FLU ¼ 0:1895eliEidi ð23Þ

3.3.2. Component in hose axial equilibrium equation
The force, FL, for a given length l can easily be extracted from Eq. (23) as:

FL
l
¼ 0:1895eliEidi ð24Þ

This relationship must now be converted into the relevant hose coordinate system in order that it can be
incorporated into equilibrium equations. The geometrical configuration of the squeezing effect is shown
graphically in Fig. 2.

The component, Fa, of the lateral force, FL, that acts in the axial direction is given by:

Fa ¼ FL sin a0
i ð25Þ
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and from Fig. 2 we have

sin a0
i ¼

2pR0
i

l
ð26Þ

Combining these two equations gives the following relationship:

FL
l
¼ Fa

2pR0
i

ð27Þ

The length of wire which will contribute to this aspect of the axial force equation will be one pitch, as the
wire within a pitch occupies different locations laterally and therefore will have a cumulative effect. After
one pitch the wire will wrap back on itself and will not change the axial stiffness.

The calculation of the lateral strain acting on a wire in the ith layer is based on the following: the
available space for a wire dsp (see Fig. 3) can be calculated from the deformed hose geometry and the
number of wires in a layer and can easily be shown to be the following relationship:

dsp ¼
cos a0

i2p R0
i þ di

2

� 	
Ni

ð28Þ

Clearly the lateral strain will only be non-zero if it is negative and it can be calculated from the following
relationship:

eli ¼
dsp � di

di
ð29Þ

Fig. 2. The configuration of the wires pressed together with respect to the hose axis, and also the complementary helix angle.
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Combining the above relationships we gain an expression for the axial force caused by the crushing effect on
one layer of reinforcement as:

Fa ¼ ð0:1895Þ2pR0
ieliEidi ð30Þ

In considering all layers the relationship must be made into a summation as follows:

Fa ¼ ð0:1895Þ2p
Xn

i¼1

ni½eli�iR0
ieliEidi ð31Þ

where for i is 1 to n and if eli P 0; ni½eli� ¼ 0 else ni½eli� ¼ 1.
A new series of factors are introduced at this point, ni½eli�, these are switch variables, one for each layer. If

the available space for the wire is less than the wire diameter, a crushing force will exist and the switch
variable will be turned on ði.e. ni½eli�;¼ 1Þ, if not there will be no squeezing effect and the switch variable will
be turned off (i.e. ni½eli�;¼ 0).

3.3.3. Component in hose lateral equilibrium equation
The lateral squeezing effect on the wires will enable the wires to bear some of the pressure as a result of

equilibrium considerations as shown in Fig. 4.
This effect can be incorporated into the lateral equilibrium equation. The pressure component of the

squeezing effect can be calculated by means of the radius of curvature of its helix, however this effect runs
perpendicular to the wire axis and therefore the radius of curvature will be the complimentary helix as
shown in Fig. 2. The radius of curvature of the complimentary helix, qc is given as:

qc ¼
R0
i

sin2ð90� a0
iÞ
¼ R0

i

cos2 a0
i

ð32Þ

The lateral pressure effect is then the force per unit length divided by the radius of curvature of the
complimentary helix, i.e.:

PL ¼ FLU
qc

ð33Þ

Fig. 3. The available space for a wire, dsp compared with a wire diameter, di, for the case where dsp > di, i.e eli ¼ 0 and there will be

no squeezing of wire.
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There is no need to obtain this expression in the hose axis as it is a pressure and would therefore be un-
changed. Substituting Eqs. (23) and (32) into the previous expression and also substituting the expressions
for R0

i (Eq. (14)) and eli (Eq. (29)) as well as adding the switch variables, ni, we gain an expression for the
pressure caused by the crushing effect on one layer as follows:

PL ¼ ni½eli�
ð0:1895ÞeliEidi cos2 a0

i

R0
i

� �
ð34Þ

The difference in the interface pressures on the inside and outside of a layer can be equated to this crushing
component added to a tension component (as given in Eq. (5) for all layers). Combining these pressure
differences for all layers it is possible to equate the pressure on the inside of layer 1 to a summation of all the
tension and crushing components of the layers in the hose (as is given in Eq. (36)). Extending this idea
further it is possible to equate the interfacial pressure between any two layers to a summation of the
crushing and tension expressions for the layers further out than the interface.

3.4. The general form of the equations

Having derived expressions for the aspects of the behaviour peculiar to the hose of current interest, it is
now possible to give a new set of governing equations for a structural model. Firstly the axial equilibrium
equation takes the form:

pR02
0 P0 þ Fzic ¼

Xn

i¼1

NiAiEiei cos a0
i þ ð0:1895Þ2p

Xn

i¼1

n½eli�R0
imieliEidi ð35Þ

It is seen that it is the internal pressure multiplied by the end area of the hose plus an axial force component
caused by the inner core, Fzic which has been derived and is given in Eq. (18). These are equated to the load
bearing of the wires in the tension component, unchanged from the original Entwistle and White (1977)
model (i.e. in Eq. (6)) added to the axial component of the squeezing effect as derived in the previous
section. Note that the second expression on the right-hand side of the equation will always have the op-
posite sign to the first expression as it will only be non-zero when eli < 0. The units for this equation are
force (N).

The lateral equilibrium equation is in the form:

P1 ¼
Xn

i¼1

NiAiEiei sin a0
i tan a0

i

2pR02
i

þ
Xn

i¼1

ni
ð0:1895ÞeliEidi cos2 a0

i

R0
i

ð36Þ

Fig. 4. The pressure caused by the compression of the wires together (note this is looking along the length of the wires and not the

hose).
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It equates the interfacial pressure between the outside of the inner core and the first layer of rein-
forcement, i.e. P1 (this has been derived in terms of the internal pressure P0 in Eq. (20)). This is equated to

Fig. 5. Flow chart for numerical method.
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the pressure bearing of the wires acting in tension as proposed by Entwistle and White (1977) (as shown in
Eq. (5)) added to the pressure bearing component borne by the wires when they are put under lateral
compression as derived in the previous section. The units of this equation are pressure (i.e. N/mm2).

The interlayer compatibility of the wires has been approximated by a similar assumption to that used by
Jakeman and Knight (1995) and is as follows:

R0
i þ di ¼ R0

iþ1 ð37Þ

for i ¼ 1 to n� 1
The change of 2di to di is because this is a helical wound hose which has a layer thickness of di compared

to a braided hose which has a layer thickness of 2di. The units of the equation are length (mm) and there
will be one equation for every interlayer existing, i.e. n� 1 in a hose with n layers.

These expressions above are manipulated into a numerically solvable form, eliminating ei and R0
i (using

Eqs. (13) and (14)). P1 and R0
0 can also be substituted (Eqs. (20) and (21)) but since they equate to lengthy

algebraic terms they are left as function substitutions. Each equation has been equated to a new variable, Yi.
This new series of variables allows a minimising technique to be used in a numerical solution. There are
nþ 1 equations and nþ 2 unknowns which are the n winding angles after pressurisation, a0

i, the axial hose
strain, ez, and the internal pressure P0. Since the solution is generally sought for a given pressure this leaves
nþ 1 unknowns and the solution is therefore feasible. It is not possible to manipulate these equations into
a closed form solution and a numerical technique must be used to reach a solution.

Fig. 6. Schematic view of the experimental test set-up for hose assembly tests.

1320 J.J. Evans, P.D. Wilcox / International Journal of Solids and Structures 39 (2002) 1307–1326



3.5. Numerical solution

The solution to the equations is found using a minimising Newton Raphson technique (Ortega and
Rheinboldt, 1970) implemented in Matlab on a Pentium 200 PC. The solution is not guaranteed to con-
verge, it may converge to a local inflexion or may diverge. One advantage in this particular problem is that
fairly good initial estimates for variables can be made. Generally it was found that if a solution did not
converge within 10 cycles it was probably drifting off to a root with no physical meaning. It was found in
some cases that the initial estimate was critical as to whether the solution was going to converge or not,
hence if it had not converged within 10 cycles the initial estimates were changed and the iteration repeated.
In this way the full range and combination of likely roots could be tried and this technique worked well
for the few situations which were very sensitive to the initial estimated values. For the majority of cases
however the iteration was relatively robust and not very sensitive to the initial values input. Once the
first pressure case had been solved the solution to the variables was then used as the estimate for the next
pressure case and often this resulted in a convergence within three cycles. The solution to a complete hose
pressure region, even for most complex hose, solving for 50 pressure points, does not take more than a few
minutes. A flow chart for the numerical technique is given in Fig. 5. The partial derivatives for the solution
were calculated symbolically and checked with a simple numerical approximation.

4. Experimental technique

The basic experimental set-up is shown in Fig. 6. The hose was pressurised using a hydraulic pump driven
pneumatically by line pressure. The pump was capable of delivering pressures up to 2759 bar (40,000 PSI)

Fig. 7. An example of a hose behaviour compared with model predictions from the model which incorporates wire squeezing to the

model that ignores it (6005st).
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by nature of being an intensifier, i.e. with a step down large to small diameter on the main piston. The hose
was connected to the pump by means of a manifold, which allowed the connection of a pressure transducer,
Bourdon pressure gauge and a pressure release valve. The connection between the hose and test rig was an
autoclave fitting utilising 60� cone to cone sealing line contact. The other end of the hose was plugged with
a blank version of the same fitting.

On the plugged end of the hose a linear variable differential transformer (LVDT) was used to monitor
the axial displacements. The LVDT gave an output which was amplified to a signal between 0 and 6 V and
channelled into the computer with an A/D card. In the centre of the hose a section of the outer cover was
stripped off to expose the outer reinforcement wires. These were then cleaned and treated to allow small
strain gauges to be attached along the axis of the wires. Single strain gauges were used in a quarter bridge
configuration and amplified (Micro Measurements 2120) before the signals were also fed into the data
acquisition computer via the A/D card.

Keeping the hose straight under pressurisation was difficult because of the slightly curved nature of the
hose caused by being stored on a reel. For this reason it was found necessary to strap the hose to a steel
angle iron by means of a number of lubricated rubber straps. More details on the experimental technique
can be found in the thesis of the first author (Evans, 1999).

Fig. 8. Pressure versus hose axial strain response compared with model predictions for the following hoses: (a) 2006st, (b) 2006str,

(c) 2012st and (d) 4012st.
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5. Comparison of predictions with experimental results—discussion

Fig. 7 gives an example of experimental results for length change compared with two model predictions:
the current model incorporating wire lateral compression and the original model i.e., a version of Entwistle
and White (1977). There is a significant difference between the predictions with the current model much
closer to the experimental data. The original model predictions have been omitted from the rest of the
results as they vary from experimental results to a similar level as seen in Fig. 7.

Figs. 8 and 9 show the length change of all the hoses tested in this work compared with predictions from
the model. Hose 2012 (Fig. 8(c)), is the only hose that gets longer, from the tests carried out. There appears
to be good agreement between experimental results and theoretical predictions for hose length change.
Where the hose gets shorter the behaviour tends to show a gradually decreasing pressure strain gradient
whereas the model tends to predict a more linear response. The reason for this difference could be caused by
the extrusion of the core material into the first layer of wires, which has the effect of increasing the axial
load on the hose. This effect has not been incorporated into the model. One hose (6012st Fig. 9(c)) shows
some difference between the model and experimental results, the model predicting a smaller length change
than actually measured. The reason for this is not known but may be caused by the wires in one or more

Fig. 9. Pressure versus hose axial strain response compared with model predictions for the following hoses: (a) 4006st, (b) 6005st,

(c) 6012st and (d) 8005st.
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layers not completely touching. In this case the length change may be a good indicator of the hose man-
ufacturing quality in terms of wire packing density. In one case (hose 2006str Fig. 8(b)) a reversal in the
direction of strain is seen both experimentally and in the predicted results. This can be explained the simple
‘neutral angle’ idea (see for example Evans (1974)). Initially as the hose is getting shorter the wires are
realigning towards an equilibrium point, once reached the hose acts like a solid pipe and gets longer and
wider according to normal continuum theory.

Fig. 10(a) and (b) gives two examples of the significant levels of hysteresis seen in the axial response of all
the hoses investigated. This is likely to be caused by frictional forces at points of contact between wires in
alternate layers and line contacts between wires in the same layers. As the hose changes in length there will
be a rotation around the point contacts and translational movements between the line contacts in wires in
the same layer. These movements will be inhibited by frictional effects and this would also account for the
heating up of the hose during fatigue testing. The level of hysteresis may be a good method of gaining
an insight into the relative motion between layers of reinforcement caused by pressure cycling. Clearly
hysteretic loss will be a function of both interlayer pressure and motion and given that fretting of wires is
dependant among other things on stress and motion between contacting wires, then hysteresis might
correlate with the likely degree of fretting, The contribution of the polymeric components of the hose to the
hysteretic behaviour will be relatively small as these are highly deformable elastic materials in comparison
to the very stiff wires.

Fig. 11 shows the pressure versus wire strain behaviour and a comparison with the model prediction. The
predicted and measured wire strains show, excellent agreement. The measured results in the majority of
cases show a linear response, the two exceptions to this were on hose 4012st and hose 4006st (Fig. 11(a) and
(b)). For these hoses in both cases tests at two locations were carried out, one result shows a linear response
and agrees with the model, while the second shows a lower strain response and a gradual increase in
gradient towards a linear response. One explanation of this is that the non-linear behaviour is that of a
slacker wire. When wires are wound onto the hose the winding drums are controlled with a friction brake.
During a down period of a particular hose winding machine a spring balance was used to gain an indication
of the variation in braking force between different spools. In the tests carried out a wide variation (around

Fig. 10. Two examples of hysteresis seen in hose length change during pressure cycling, (a) for hose getting longer (2012st) and (b) for

hose getting longer (8005st).
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75% of mean) was recorded. It may be that the spool tension must go beyond some threshold level in order
to avoid a slack wire problem.

6. Conclusions

The model presented shows good agreement with experimental results and may be used by hose de-
signers to predict hose behaviour and improve hose performance. In addition to predicting hose length

Fig. 11. Pressure versus wire strain response compared with model predictions for the following hoses: (a) 4012st, (b) 4006st, (c) 6005st,

(d) 6012st and (e) 8005st.
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change and wire tensions it can also predict the wire angle change and radial strain. The current model does
not attempt to model the axial hysteresis in the hose and this could be an interesting topic for future work.
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